29 research outputs found

    Measuring the robustness of resource allocations for distributed domputer systems in a stochastic dynamic environment

    Get PDF
    Heterogeneous distributed computing systems often must function in an environment where system parameters are subject to variations during operation. Robustness can be defined as the degree to which a system can function correctly in the presence of parameter values different from those assumed. We present a methodology for quantifying the robustness of resource allocations in a dynamic environment where task execution times vary within predictable ranges and tasks arrive randomly. The methodology is evaluated through measuring the robustness of three different resource allocation heuristics within the context of the stochastically modeled dynamic environment. A Bayesian regression model is fit to the combined results of the three heuristics to demonstrate the correlation between the stochastic robustness metric and the presented performance metric. The correlation results demonstrated the significant potential of the stochastic robustness metric to predict the relative performance of the three heuristics given a common objective function

    Robust processor allocation for independent tasks when dollar cost for processors is a constraint

    Get PDF
    Includes bibliographical references (pages 9-10).In a distributed heterogeneous computing system, the resources have different capabilities and tasks have different requirements. Different classes of machines used in such systems typically vary in dollar cost based on their computing efficiencies. Makespan (defined as the completion time for an entire set of tasks) is often the performance feature that is optimized. Resource allocation is often done based on estimates of the computation time of each task on each class of machines. Hence, it is important that makespan be robust against errors in computation time estimates. The dollar cost to purchase the machines for use can be a constraint such that only a subset of the machines available can be purchased. The goal of this study is to: (1) select a subset of all the machines available so that the cost constraint for the machines is satisfied, and (2) find a static mapping of tasks so that the robustness of the desired system feature, makespan, is maximized against the errors in task execution time estimates. Six heuristic techniques to this problem are presented and evaluated

    О верификации измерений скорости поверхностных течений когерентным радаром СВЧ-диапазона с помощью дрифтеров

    Get PDF
    Introduction. Conventional contact measurements of hydrographic parameters frequently fail to provide the necessary accuracy of data in the field of water area monitoring. This problem can be solved using coherent radars enabling direct measurements of surface current velocities.Aim. To establish the accuracy of surface current velocities measured by a Doppler radar using drifter data.Materials and methods. In June 2022, coastal operational oceanography studies were conducted at the hydrophysical test site of the Institute of Oceanology of the Russian Academy of Sciences in the Black Sea near Gelendzhik. Measurements were carried out using a coherent X-band radar installed on the Ashamba research vessel simultaneously with drifter experiments using Lagrangian drifters of the near-surface layer with an underwater 0.5 m sail. Coordinates were transmitted via mobile communication. The drifter data on the current velocity and direction were used to verify radar measurements. Measurements were taken onboard of the research vessel at a low speed and different distances from the shore, near the drifters. The tracks of the vessel and drifters were recorded simultaneously. Processing of the radar data involved obtaining Doppler spectra of signals to estimate the dynamic processes on the sea surface, including the current velocity.Results. Radial components of the near-surface current velocity were calculated. Then, the current velocity values obtained based on the drifter and radar data were compared.Conclusion. The present work makes a contribution to the advancement of methods for measuring surface currents from the board of a moving ship by Doppler radars. The obtained results confirm the suitability of the radar hardware and software and signal processing algorithms for measuring currents. The radar measurement data were found agree well with drifter data in the velocity range from 15 cm/s.Введение. Традиционные контактные средства измерений гидрографических параметров зачастую не обеспечивают необходимую оперативность получаемых данных для решения задач мониторинга акваторий. Перспективным направлением является применение когерентных радаров, позволяющих непосредственно измерять скорости поверхностных течений.Цель работы. Оценка достоверности результатов измерений приповерхностной скорости течения доплеровским радаром сравнением с данными дрифтеров.Материалы и методы. В июне 2022 г. был проведен эксперимент по прибрежной оперативной океанографии в Черном море на акватории гидрофизического полигона "Геленджик" Южного отделения Института океанологии РАН с использованием доплеровского радара. Скорость течения измерялась когерентизированным навигационным радиолокатором сантиметрового диапазона с цифровой обработкой, установленным на научноисследовательском судне "Ашамба", одновременно с дрифтерными экспериментами с использованием лагранжевых дрифтеров приповерхностного слоя с подводным парусом высотой 0.5 м, с передачей координат по мобильной связи. Данные дрифтеров о скорости и направлении течения использовались для верификации радарных измерений. Измерения проводились с борта научно-исследовательского судна на малом ходу на различном расстоянии от берега, вблизи дрифтеров. В процессе измерений осуществлялась запись треков судна и дрифтеров. Обработка данных радиолокатора основана на исследовании спектральных характеристик отраженного сигнала, позволяющих оценивать динамические процессы на морской поверхности.Результаты. По результатам обработки доплеровских спектров были получены радиальные составляющие скорости приповерхностных течений, далее было выполнено сопоставление скорости течений по данным дрифтеров и данным радиолокации.Заключение. Настоящая работа является определенным шагом в усовершенствовании методов измерений поверхностных течений с борта движущегося судна доплеровским радаром. Результаты верификации подтверждают пригодность аппаратно-программной части радара и алгоритмов обработки сигнала для измерения течений. Данные радиолокационных измерений хорошо согласуются с данными дрифтеров в диапазоне скоростей от 15 см/с

    2017 update of the WSES guidelines for emergency repair of complicated abdominal wall hernias

    Get PDF
    Emergency repair of complicated abdominal wall hernias may be associated with worsen outcome and a significant rate of postoperative complications. There is no consensus on management of complicated abdominal hernias. The main matter of debate is about the use of mesh in case of intestinal resection and the type of mesh to be used. Wound infection is the most common complication encountered and represents an immense burden especially in the presence of a mesh. The recurrence rate is an important topic that influences the final outcome. A World Society of Emergency Surgery (WSES) Consensus Conference was held in Bergamo in July 2013 with the aim to define recommendations for emergency repair of abdominal wall hernias in adults. This document represents the executive summary of the consensus conference approved by a WSES expert panel. In 2016, the guidelines have been revised and updated according to the most recent available literature.Peer reviewe

    2017 update of the WSES guidelines for emergency repair of complicated abdominal wall hernias

    Get PDF

    Resource allocation in a cluster based imaging system

    No full text
    Abstract—Recently there has been an increased demand for imaging systems in support of high-speed digital printing. The required increase in performance in support of such systems can be accomplished through an effective parallel execution of image processing applications in a distributed cluster computing environment. We present a mathematical model of such a cluster based raster imaging system. The output of the system must be presented to a raster based display at regular intervals, effectively establishing a hard deadline for the production of each output image. Failure to complete a rasterization task before its deadline will result in an interruption of service that is unacceptable. The goal of this research was to design a resource allocation heuristic capable of completing each rasterization task before its deadline, thus, preventing any service interruptions. This new heuristic is evaluated within a simulation of the studied raster imaging system. We clearly demonstrate the effectiveness of the heuristic by comparing its results with the results of two resource allocation heuristics commonly used in this type of system. Index Terms—heterogeneous computing, resource management, dynamic resource allocation, distributed computing I

    Robust resource allocations in parallel computing systems: model and heuristics

    Get PDF
    Includes bibliographical references (page [8]).This is an overview of the material to be discussed in the invited keynote presentation by H. J. Siegel; it summarizes our research in [2, 16, and 17]. The resources in parallel computer systems (including heterogeneous clusters) should be allocated to the computational applications in a way that maximizes some system performance measure. However, allocation decisions and associated performance prediction are often based on estimated values of application and system parameters. The actual values of these parameters may differ from the estimates; for example, the estimates may represent only average values, the models used to generate the estimates may have limited accuracy, and there may be changes in the environment. Thus, an important research problem is the development of resource management strategies that can guarantee a particular system performance given such uncertainties. To address this problem, we have designed a model for deriving the degree of robustness of a resource allocation--the maximum amount of collective uncertainty in system parameters within which a user specified level of system performance (QoS) can be guaranteed. The model will be presented and we will demonstrate its ability to select the most robust resource allocation from among those that otherwise perform similarly (based on the primary performance criterion). The model's use in allocation heuristics also will be demonstrated. This model is applicable to different types of computing and communication environments, including parallel, distributed, cluster, grid, Internet, embedded, and wireless
    corecore